12-04 16:32
订阅
谷歌表示,借助 TensorFlow 2,可在跨平台、设备和硬件上实现一流的训练性能,从而使开发者、工程师和研究人员能够在他们喜欢的平台上工作。IT之家获悉,现在,TensorFlow 用户可以在搭载 Apple 全新 M1 芯片或 Intel 芯片 Mac 上的 利用 TensorFlow 2.4 Mac 优化版和新的 ML Compute 框架来加快训练速度。这些改进提升了 Apple 开发者通过 TensorFlow Lite 在 iOS 上执行 TensorFlow 的能力,继续展现了 TensorFlow 在 Apple 硬件上支持高性能 ML 执行方面的广度和深度。
Apple 近期发布了搭载全新 M1 芯片的系列 Mac 产品,如此一来,Apple 针对 Mac 优化的 TensorFlow 2.4 版能够充分利用 Mac 的强大功能并在性能上大幅提升。
ML Compute 是 Apple 的新框架,可以在 Mac 上训练 TensorFlow 模型,现在,您可以在搭载 M1 和 Intel 芯片的 Mac 上实现加速的 CPU 和 GPU 训练。
例如,M1 芯片搭载功能强大的新型 8 核 CPU 和多达 8 核 GPU,均针对 Mac 上的 ML 训练任务进行了优化。在下图中,您可以看到针对 Mac 优化的 TensorFlow 2.4 如何在搭载 M1 和 Intel 芯片的通用型号 Mac 上实现巨大的性能提升。
开始使用针对 Mac 优化的 TensorFlow
用户无需对其现有的 TensorFlow 脚本进行任何更改即可使用 ML Compute 用作 TensorFlow 和 TensorFlow 插件的后端。
首先,请访问 Apple 的 GitHub 仓库,了解如何下载和安装 Mac 优化的 TensorFlow 2.4。
机器之心
原创
2020/11/19
你的Mac有了专用版TensorFlow,GPU可用于训练,速度最高提升7倍
你的新 Mac 可能还在路上,但苹果表示,专为 Mac 优化的 TensorFlow 版本已经做好了,训练速度最高提升到原来的 7 倍。
对于开发者、工程师、科研工作者来说,Mac 一直是非常受欢迎的平台,也有人用 Mac 训练神经网络,但训练速度一直是一个令人头疼的问题。
上周,苹果发布了搭载 Arm 架构 M1 芯片的三款新 Mac,于是就有人想问:用它们训练神经网络能快一点吗?
今天,苹果发文表示:我们专门做了一版为 Mac 用户优化的 TensorFlow 2.4 框架,M1 版 Mac 和英特尔版 Mac 都能用。这一举动有望大幅降低模型训练和部署的门槛。
此前,在 Mac 上,TensorFlow 仅支持将 CPU 用于训练,但新的 tensorflow_macos 分支利用苹果的 ML Compute,能让 GPU 也被利用起来。苹果在博客中介绍说:「我们使用了更高级别的优化方法,比如熔合层,选择合适的设备类型,将图作为原语编译、执行并由 CPU 上的 BNNS 和 GPU 上的 Metal Performance Shader 加速。」
ML Compute 是苹果公司今年推出的新框架,可用于在 Mac 上进行 TensorFlow 模型的训练。现在,无论新的 M1 版 Mac 还是旧的英特尔版 Mac,其 CPU 和 GPU 都能用来加快训练速度。
M1 芯片包含新的 8 核 CPU 和最多 8 核的 GPU,并针对 Mac 的机器学习训练任务进行了优化。下面两张图表分别展示了针对 Mac 优化后的 TensorFlow 2.4 在不同模型训练中的性能提升:
上图展示了使用 ML Compute 分别在搭载 M1 和英特尔芯片的 13 英寸 MacBook Pro 上进行机器学习训练的情况。柱形的高度代表单批次的训练时长。可以看出,优化后的 Mac 版 TensorFlow 2.4 的训练速度得到了明显提升。在换成 M1 版的新 MacBook Pro 之后,提升就更为明显了,训练速度最高提升了 7 倍。
同样使用 ML Compute,在搭载英特尔芯片的 2019 Mac Pro 上进行常见模型的训练,性能提升也相当明显。